Search Algorithms, Trees, and Graphs Part I

Anton Gerdelan gerdela@scss.tcd.ie

General Trees

- Node - item in the tree
level
- Branch - link connecting nodes

- Null tree - nothing in tree
siblings
- Tree is either
- a null tree
- a root with several sub-trees

Typical Tree Operations

- data (Node* N) - return value of data in a node
- parent(Node* \mathbf{N}) - return pointer to parent
- leftmost_child(Node* N)
- return pointer to furthest left child of N
- right_sibling(Node* N)
- insert_child(Node* N, data)
- make a new node with data and make it leftmost child of N
- is_empty () - return true if tree empty
- How many pointers will your tree Node have?

Searching for Data in a Tree

- An algorithm that visits each node once - tree traversal - and compares contents to sought value
- traversal ops: V-visit / look at node, L - left sub-tree, R - right sub-tree
- Pre-order: V, L to R

1. look at data in root
2. recurse all subtrees from left to right

- In-order: L, V to R

1. recurse leftmost subtree
2. look at root of current sub-tree
3. recurse remaining subtrees to rightmost subtree

- Post-order: L to R, V

1. recurse all subtrees from left to right
2. look at root

Traversal

- Using recursion
- Pre-Order: VL to R
- ABCDEF
- In-Order: LV to R
- B A D C E F
- Post-Order: L to RV
- B D E C F A

- Some traversals more useful than others depending on situation
- recall BSP

"General Tree" Implementation

- Q. Remember how to implement a tree using arrays?
- Any number of children
- Using pointers a tree is similar to a linked list
- leftmost child pointer

- right sibling pointer
- A limited tree with fixed number of children would be easier

Di?

- 2 branches or less per node
- traversals only have 2 subtrees
- VLR (pre order), LVR (inorder), LRV (post-order)

```
struct Tree_Node;
struct Tree_Node {
    char data;
    Tree_Node *left, *right;
};
Tree_Node *root = (Tree_Node*)malloc(
root->data = 'A';
root->left = NULL;
```

root->right = NULL;

```
```

```
root->right = NULL;
```

```
- writing a function to add a new node is a little tricky (as with linked lists)
- tutorial?

\section*{Arithmetic Trees}
- construct tree to represent arithmetic expression \(a *(b+c) /(m-2)\)
- set up sub-tree for each set of brackets


subtree 2

\section*{Arithmetic Trees}
\[
\text { - } \mathbf{a} *(\mathbf{b}+\mathbf{c}) /(\mathrm{m}-2)
\]

subtree 3

finally

\section*{Arithmetic Trees}
- Q. in-order traversal generates: ... ? (that's L,V,R)

see also: Reverse Polish Notation

\section*{Binary Search Tree (BST)}
- uses a binary tree
- data stored in any node is unique
- any data in left subtree is less than root
- any data in right subtree is greater than root
- left and right subtrees are also binary trees

\section*{Balance}
- A binary tree is perfectly balanced if
- total nodes in left and right trees differs by max 1
- levels in left and right trees differs by max 1

- To find if 80 is in this tree:
- compare: 20,30, 80

\section*{Balance}
- Not balanced, but still a binary search tree:
- 6 comparisons needed to find 80
- Search on BST
- worst case O(n)

- average case \(\mathbf{O}(\log \mathbf{n})\)

\section*{Balance}
- A tree will be balanced if we insert values in particular order
- 20, 18, 30, 2, 22, 80 - first tree
- 2, 18, 20, 22, 30, 80 - second tree
- If we sort the data into a list or array first we can create a perfectly balanced tree:
- \(2,26,30,34,56,60,65,70,80,94,96,98,99\)
- Then we can choose the mid value - 65 - insert that first, split into a left and right list - choose mids of those, and so on.
- so insertion order will be 65, 30, 2, 26, 56, 34, 60...```

